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THERMODYNAMICS OF HETEROGENEOUS AND ANISOTROPIC
NONLINEAR FERROELASTIC CRYSTALS
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ABSTRACT. In a previous paper, in a geometrized framework for the description of sim-
ple materials with internal variables, the specific example of ferroelastic crystals with
anisotropy grain-tensors & la Maruszewski was considered and the relevant structure of
the entropy 1-form was derived. In this contribution the linear morphism defined on the
fibre bundle of the process and the transformation induced by the process are obtained as
new results within the geometrical model. Furthermore, Clausius-Duhem inequality for
these media is exploited, and, using a Maugin technique (see also Colemann-Noll proce-
dure), the laws of state, the extra entropy flux and the residual dissipation inequality are
worked out. Finally, following Maugin, the heat equation in the first and the second form
is derived.

1. Introduction

In a previous paper [1] a geometrization technique for thermodynamics of simple ma-
terials with internal variables [2]-[8] was applied to the specific example of ferroelastic
crystals (see [9]-[13]) and the expressions for the existence of an entropy function and the
entropy 1-form were derived. The model of ferroelastic crystals developed in [9]-[13] is
based on a concept of anisotropy grain structure first introduced in [14]. The idea used
consists in the assumption that the body as a whole is homogeneous and isotropic, where
there exist particular physical fields responsible for its internal structure and geometry,
described by internal variables [14]. In this way the balance equations for the mass, the
momentum, the moment of momentum and the internal energy, and the rate equation for
the heat flux vector are supplemented by the evolution equations for the anisotropy-grain
tensors forming altogether a coupled system of equations describing the behavior of the
ferroelastic body considered. The proper form of these equations has been derived from
the thermodynamical models presented in [9]-[13]. The stress wave propagation and some
explicit examples of stress tensors in these models were considered in [13] and [10]-[12].
In this contribution the linear morphism defined on the fibre bundle of the process and the
transformation induced by the process are obtained as new results within the geometrical
model developed in [1] for the description of ferroelastic crystals (see also [15] and [16]
for the geometrization technique applied). Furthermore, we exploit the Clausius-Duhem
inequality for these media and, using a Maugin technique [17] (see also Colemann-Noll
procedure in [18]), we derive the extra entropy flux, the residual dissipation inequality and
the laws of state, where as relevant result the contributions in the total stress tensor ex-
pressed in terms of internal variables are rewritten in terms of macroscopic variables (the
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Duhamel-Neumann tensor stress and the nonlinear strain tensor). Finally, the heat equation
in the first and the second form is obtained following Maugin [17].

2. The anisotropy-grain tensor model

FIGURE 1. Internal structure of the body. Anisotropic character of grains (after [19])

Now, we recall the model developed by Maruszewski in [14] for heterogeneous and/or
anisotropic media. The ferroelastic crystal can be defined as a crystal which has at least
two orientation states that differ from each other with respect to at least one of the compo-
nents of the spontaneous strain tensor. A suitably oriented uniaxial stress can often switch
one ferroelastic orientation state to another so that the ferroelastic domains can be made to
grow or shrink by applying such a driving force in complete analogy with domains in fer-
roelectric and ferromagnetic materials. In [14] it was assumed that a heterogeneous body
B is formed by several kinds of grains with different anisotropies (see Fig.1 after [19]).
The families of different species of grains are labeled by an index « (« running from 1 to
an integer r, the total number of species) and the families of different anisotropies occur-
ring in the body are labeled by a further index 3 (8 running from 1 to s, the total number
of anisotropies). A third index v is introduced to distinguish between line anisotropies
(y = 1) and planar anisotropies (7 = 2). Now, following Maruszewski, the body as
a whole is regarded as homogeneous and isotropic in which particular physical fields re-
sponsible for its internal structure and geometry exist. Such fields are modeled by so-called
internal variables, having tensorial character and defined by the Anisotropy-Grain tensor
(or shortly, the AG-tensor)

1) % (t,x) = Von®?(t,x) A", (a=1,2,..,r; B=1,2,...,8; v=1,2),

where there is no summation over « and . In equation (1) V' denotes the characteristic
dimension of the a-grain or domain field possessing § anisotropy (in the 3D case it is the
characteristic volume of the «a-grain, in the 2D case the characteristic surface S¢ of the
a-grain, in the 1D case the characteristic length L®(diameter) of the a-grain). Finally,
nB(t,x) is the number density of the a-grain with anisotropy /3 defined as follows

@3]

af3 apB
3D : naﬁ(t,x) _ dN (t,X) dN (t7x)

aB
dNT(at’x), 2D : naﬁ(t,x) = ge 1D : naﬁ(t,x) = e
where N (t, x) is the corresponding total number of grains with 3 anisotropies.
Moreover, in equation (1) the tensor A®7 reflects the anisotropy (geometry) of a grain and it is
defined as follows (see Fig2 ): A®! = t* @ n, A”? = n® ® n, for line anisotropies and for
planar anisotropies, respectively, with n the unit normal vector to the the cross section 13 of the
domain dBB of the body, t° the tangent unit vector to the line anisotropic structure 5 and n” the



THERMODYNAMICS OF HETEROGENEOUS AND ... 3

oy

Ty, -y

(T 1
e

FIGURE 2. Element dB of a domain in the case of line (b) and planar (c)
anisotropies. §13 is the cross-section of d3 (after [14])

FIGURE 3. Line anisotropy model (after [13])

unit normal vector to the surface anisotropy. I'*® may be regarded as a sort of order parameter for
ferroelasticity, in the sense of Landau [20], provided one assumes that anisotropies disappear in the
ferroelastic crystal when 6 reaches the critical value 6. (i.e., AP =(Qford > 6.). A few specific
examples have been analyzed in detail in [9], [12] and in [13]. Let us consider now a case of line
anisotropy of the body spontaneously deformed (see Fig. 3 after [13]). We assume that all the lines
or the fibers (infinite quantity because of the continuous model) are placed in the plane xiz2 and
parallel to x3z-axis. Since we consider a single-domain (one grain) medium, the anisotropy-grain
tensor reads

3) I} =Ty =A"(x,t)=t"®n, t"=1{0,0,1}, n=1{0,1,0}.

Hence, only I's2 # 0 since
0 0 O
@) A"=(0 0 0
01 0

Let us consider now a case of plane anisotropy of the body spontaneously deformed (see Fig. 4 after
[13]). We assume that all the planes (infinite quantity because of the continuous model) are parallel
to the plane x1x3. Since we consider a single grain medium, the anisotropy-grain tensor reads

5) I} =Ty =A%xt)=n"@n, n’={0,1,0}, n={01,0}
Hence, only I'22 # 0 since

0 0 0
(6) A”=(0 1 0

0 0 0

In the case of an anisotropic layered structure of a grain, the total anisotropy of a grain is described
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FIGURE 5. Anisotropic layered structure (schematic draw): (1) grain, (2) pla-
nar anisotropy, (3) line anisotropy (after [14])

by the superposition of the line and planar anisotropies (see [14]). Hence, we can introduce the total
anisotropy tensor as Ag = A?jl + Asz. A simple example is presented on Fig. 5 (see [14]), where

0 0 0 0 0 O
t’ ={0,0,1}, n={0,1,0}, n’={0,1,0}, A”" = 0 0 0 |, A= 0 1 0
0 1 0 0 0 O
Hence, the total anisotropy tensor reads
0 0 0
) AL =A0 +A2=( 0 1 0
01 0

It shows that it is possible to describe quite complex structures. In the limiting case of
homogeneous body, when the body does not consist of grains we have (3D) [14]

_ NPt x)
==
It means that in such a case the tensor I'*” describes, as internal variable, only the anisotropy.
In the other limiting case of the isotropic body the tensor AP takes the following form:
APY =1, hence T =Vn*I describing only the grain structure of the body.

The above defined anisotropy-grain tensor I'“? can describe heterogeneous and anisotropic
media as an internal variable in many situations. Evolution of grain structure and anisotropy
of materials occurs during many processes accompanied by mechanical deformation and
thermal treatments. Such phenomena as: recrystallization, phase transitions, twinning,
grain growth and similar phenomena, are typical during annealing, cooling, cold-working
or plastic deformations [14]. The models of ferroelastic bodies may have relevance in the

® V=V, ntx) NP(t,x) =1, T*(t,x)=T" = A",
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study of concrete materials such as, e.g., steel, martensitic plates in metals and others. On
Fig. 6 the evolution of structure and anisotropy in materials is shown (after [21]).

FIGURE 6. Evolution of a microstructure of steel during cooling (after [21])

3. Fundamental laws

In [10], in the framework of the extended rational thermodynamics with internal vari-
ables, using the standard Cartesian tensor notation in a rectangular coordinate system, a
model was developed for a heterogeneous and anisotropic non linear thermoelastic body,
in which the following fields interact with each other: the elastic field described in the case
of finite deformations by the total stress tensor ¢;; and the nonlinear Euler strain tensor
E;j; the thermal field described by the temperature ¢ and the heat flux g;; the grain-
anisotropy field described by the internal variable I';;, in the case that there exists one
type (size) of grain ( &« = 1) and one kind of anisotropy (8 = 1). Thus, the independent
variables are represented by the set

The specific choice shows that the relaxation properties of the thermal field (second sound)

are taken into account in agreement with the general philosophy of the extended thermo-

dynamics. The corresponding effects for the mechanical field and for the anisotropy-grain

field are ignored, i.e. viscous properties of the body are excluded from the considera-

tion and the field I';; is not of kinetic character. All the processes occurring in the body

considered are governed by two groups of laws. The first one deals with the balance laws:
the continuity equation

(10) it i = 0,

where p is the mass density and v = 1 (being u = (u;) the displacement vector and the
superimposed dot denotes the material derivative);
the momentum balance

11 uv —divt — £ =0,
where f denotes the body force and t is the total stress tensor given by
(12) t=T-o"F - g4

(see equation (2.19) of reference [10] for the law of state (12) defining the total stress tensor
t ). First, we mention that the model developed in [10] refers to large deformations, so that
T = ||T;;|| is here the symmetric Duhamel-Neumann stress tensor defined as

ov

1 T — fj—
(13) ij “8Eij
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The extra terms in (12) account for the grain-anisotropy. The term o7 ¥ corresponds to the
thermoelastic stress and in components ||o;#]| is given by

(14) ol =14q,Es; + N qp Bjy,

ij
where q = (g;) is the heat flux vector, TI? = (II) is the affinity defined by II = ug—i,
and ¥ =e¢—60S, e and S are the Helmholtz free energy, the internal energy
and the entropy per unit mass, respectively. In [10] it was derived that U depends on the
following set of variables ¥ = W(E, 0, q,T'). The non linear Eulerian strain tensor F;;
is a symmetric rank-2 tensor defined by E;; = %(u” + Uj; — Um,ilUm, ;). It describes
the elastic field in the case of finite deformations. In the general case (« kinds of grains
and [ anisotropies), the second extra term of (12) accounts for the interaction of the
grain-anisotropy field with the mechanical field. It is defined by

HA . HA
oA =N "ol with o4 = nefTP B,y 4 2P By + 02 TeP B,
a,B

af o)

and i :Mar?ﬁ

an affinity;

the moment of momentum balance €ijk ik = 0,
which results from the assumption that the medium has no spin, microrotational or other
skew-symmetric features, it means that the total stress tensor is symmetric (see equations
(3.3)-(3.6) in [10], where, using the laws of state, a constitutive relation was worked out
for a symmetric total stress tensor according to particular assumptions);

the internal energy balance

(15) pé — pgy + divg — pr =0,
with 7 the heat radiation per unit of mass and p;) the power of internal forces defined by
(16) piy=t-L=(T-o"" —of4). L,

where L = Vv is the gradient of the velocity. In the following sections we use the relation
L=FF! expressing L in terms of the gradient of the deformation F.

A second group of laws deals with the rate properties of the heat flux and the anisotropy-
grain field

(17) 4= Q(0), T=G(C),

* * .
where q;,= q1 - Qijqja Fij: Fij — Qikrkj + Fika’j7 Qij = %(vi,j - vj,i) is the
antisymmetric part of L;; = v; ; and the superimposed asterisk indicates the Zaremba-
Jaumann time derivative (see [22]). To be sure that the physical processes occurring in the
body considered are real, all the admissible solutions of the proposed evolution equations

have to satisfy the following entropy inequality
: 1
(18) uwS+V-Js >0, where Jg= 5q+k,

with Jg the entropy flux and k an additional term called extra entropy flux density (see
[17] and [23]-[26]). The set of the constitutive functions are

(19) Z={te S5k QG}.
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In [9]-[13] constitutive equations Z = Z(C) were obtained for ferroelastic crystals in
different cases. The entropy inequality (18) was analyzed by Liu’s theorem [27], and some
constitutive relations were obtained, using Smith theorem [28], with the help of isotropic
polynomial representations of proper constitutive functions satisfying the objectivity and
material frame indifference principles (see [29]-[31]). In [10] the constitutive relation (12)
for the total stress tensor was obtained expanding the free energy in Taylor series with
respect to a particular natural state. In [12] the most general expression for G in the case
of one-domain ferroelastic crystals (i.e., r = s = 1) was explicitly calculated (see equ.
(3.24)) in the following form: Trf‘ij = ad;; + bty; + cl's;; + N(q,V0,t,I'), where
71" denotes the relaxation time for the spontaneous strain field, the coefficients a, b, c

depend on the temperature 6 and the set of invariants built on t, VO, I', g (see (3.18),
(3.22) and (3.25)), while the non-linear part N depends also on t, VA, I', g and can
be expanded into a polynomial expression with coefficients depending on € and the same
invariants. The linearized theory (N = 0, a = 0) was considered explicitly in [13].

4. A geometric model for ferroelastic crystals

Now, we present a short review of a geometric model for ferroelastic crystals elaborated

in [1], where following [2]-[4], introducing the concepts of process and transformation,
we have derived the expressions for the existence of an entropy function and the entropy
1-form. We have considered a material point and we have defined the state space at time ¢
as the set B, of all state variables which "fit” the configuration of the element at time ¢. B;
is assumed to have the structure of a finite dimensional manifold. The “total state space”
is the disjoint union B = |J,{t} x B, with a given natural structure of fibre bundle over
R, where time flows [2]-[4]. If the instantaneous state space B; does not vary in time (i.e.
there is an abstract space B such that B; ~ B for all instant of time t), then the total state
space BB has the topology of the Cartesian product B ~ R x B (see [2]-[4]).
Moreover, we consider an abstract space of processes [2]-[6], i.e. a set II of functions
P{ :[0,t] —» G, where [0, is any time interval, the space G being a suitable target
space defined by the problem under consideration, ¢ a label ranging in an unspecified
index set for all allowed processes and ¢ € R the so called duration of the process. Then,
a continuous function is defined (see [2]-[8])

(20) x:(t, P) e Rx I — p, € C°(B, B),
with pi:be D C B — pi(b) = b, € Rt C B, so that for any instant of time ¢ and
for any process P} € II a continuous mapping, p¢, called transformation induced by the
process is generated, which gives point by point a correspondence between the initial state
b and the final state pi(b) = b;. Now, we introduce a function of time
/\i()_{b_ ifT=0 with b e D!
’ pe(b)  if T €]0,1]
such that the transformation for the medium is givenby d : R — R x B
(22) §:7€R— (1) = (1, M\(7)) €R x B.

@D

With these positions the transformation is interpreted as a curve § in the union of all state
spaces such that it intersects the instantaneous state space just once. In [1], taking into
account the nonconventional thermodynamical model developed in section 3 of this paper,
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it was assumed that the state variables are the deformation gradient ¥, the internal energy
e (by a Legendre transformation the temperature 6 was replaced with the internal energy
e), the vector 3 = V0, the heat flux vector q and the Anisotropy-Grain tensor I' in the case
that one type (size) of grain ( & = 1) and one kind of anisotropy (8 = 1). Then, the full
state space is

(23) B=Lin(V)bROVOVOW,
where W is a vector space accounting for the internal variable I'. In the general case
of o grains (o = 1,2,...,7) and 3 anisotropies (3 = 1,2,...,s), W = ®,5T5(V) is
given by r.s copies of T9(V), V =~ R3, each one corresponding to a grain specie
« with anisotropy 3, being T% (V) a rank-2 tensor. Accordingly our state variables are
(F,e, V0, q,T') and the process Py is described by the following functions

P} = [L(r),h(r),7(7),Q(7), A(T)], where h(r)=-V-q,  ~(r)=8.

The space G is given by G = Lin(V) @ R®V @&V @& W. Moreover, the constitutive
functions 6, t, Q and A are defined in the following way

:RxB— R t:Rx B — Sym(V)
Q:RxB—YV A:RxB—W,

where RTT is the set of real positive numbers, ) and W are vector spaces accounting
for Q and A, respectively.
In this paper we assume that for each pair (P, b), the following dynamical system holds

F =L(7)F(r)

pé = t(6) - L(r) + h(r)
24) B=~(r)

q=Q(J)

I = A(5),

differing from that one presented in the previous paper [1], because in the rate equations
of the system (24) for the heat flux and the anisotropy-grain field we have taken into con-
sideration the material derivatives of these quantities and not the Zaremba-Jaumann time
derivatives as in (17) (see [29]-[31] for this choice). Equation (24), is given by (15), when
the heat radiation per unit of mass is disregarded.

In this paper, as new results, we derive the linear morphism G, defined on the fibre bun-
dle of the process determined by the system (24), and the transformation induced by the
process pi(b). The linear morphism G, defined in the following way

G:BxG~TB —TB,
has the following form
(25) G: (F’e7137q7F7L’h7,Y7Q7A) - (F’e’IB7q7F7F7é7B7q7r)7

which in matrix form is expressed by:

5 . N\T
(F.e.8.q.0.F,¢,8,4.T) :(f) OA)(Re,ﬁ,q,r,L,h,v,Q,A)T,
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with

(26) A=

o © Oxl+
o o oo
co~ oo
oo oo
—_—o o oo

The transformation pi(b) is given by (see [4]):

F = fo L(T)F 7)|d
_ e = [y [t(d) Lt )+h( )] dt
27) pib) =4 B = fo [7(7)]
a = [,1Q)d
r = [[A®) dt

In this geometrical structure, following standard procedures (see [2]-[4] and [8]), in [1] an
“entropy function” was introduced, related to a transformation between the initial state b
and the state pi(b) = b; , by setting:

| b1
(28) s(pk, b, 1) / —V-Jydr 7/ ,7v qd7+/ jq-VQde/ -V -kdr,
o no po 0o M

which in turn defines a 1-form Qin R x B called the entropy I-form. Using (24)2 we have
—V -q=pé—t-(FF1). So that the final expression for s(p, b, t) is

i bt) = ih Q= L[ LepT. I
(29) s(pt,b,t)—/éQ with Q_G[ MtF dF+de+M(0
where the algebraic rule t - (FF~1) = (tF~7).F has been used, with F~7 = (F~1)T
(T being matrix transposition). Expressions of t, q and k were derived in [10] (see also
[9], [11]-[13] in which ferroelastic crystals were studied in different cases). Thus, the
entropy function is now calculated as an integral along a path into the space R x B of all
thermodynamic variables together with the independent time variable. In components the
entropy 1-form {2 becomes:

(30) szudq“—kwodt:w,qdq‘q, (A=1,2,...,6),

where

q~V070V~k)]dT

A = (F,e,V0,q,T,1)

and
1 1 1
=(-——tF71,2,0,0,0—q-V0—~-V-k]|.
AT ( W g " )
Thus, by differentiation a 2-form is derived:
(31

1
dQ = 5 Aundg” Ndg® + Exdt Adq”, where Aux = Ouwx = drwy; and Ex = dowx — xwo.

Applying the closure conditions for the 1-form, we obtain the following necessary con-
ditions for the existence of the entropy function during the process under consideration

(NN I 1 1 2 (1
(32) ap(é)f—ae[uow ] 8(9201 Vo v k) o (9)
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(33) ) [itF‘T] - —82 ( 22 = fv k)
8(4),4

9qF 0, (A=1,2,6, B=3,4,5).

If the entropy 1-form in (29) is closed and its coefficients are regular (i.e. they have no
singularities), this form is exact and the existence of an upper-potential S satisfying the
relation  S(o;) — S(0p) > s is ensured (see [8]). Starting from the entropy 1-form, it
is possible to investigate and to introduce an extended thermodynamical phase space in a
suitable way (see [32]).

5. Clausius-Duhem inequality analysis and heat equation

In this section, taking into account the model developed in [10] for ferroelastic media,
we exploit the Clausius-Duhem inequality in the case that one type (size) of grain ( « = 1)
and one kind of anisotropy (8 = 1) is taken into consideration. Applying a Maugin
technique [17] (see also Coleman-Noll procedure in [18]) we derive the entropy flux, the
residual inequality and the laws of state, where in a relevant result the contributions in
the total stress tensor expressed in terms of internal variables are rewritten in terms of the
macroscopic variables represented by the Duhamel-Neumann tensor stress and the non-
linear Eulerian strain tensor. Finally, the heat equation in the first and the second form is
worked out following Maugin in [17].

We consider the entropy inequality pS+V-Jy >0, with J, = % + k. Taking into
account the positivity of 6 > 0 we have

(34) pfS + V- (035) —Js - VO > 0.

Using in (34) the free energy expression ¥ = e — 6.5, the internal energy balance equation
(15) and the entropy flux density, we obtain

(35) —(¥ +0S) +py + V- (k) — I, - VO > 0.
Taking into account that ¥ is a constitutive function of (E,#, V6, q,T") we have
ov . ov, oV ov . ov .
(36) T -0 — ") . FF '+ V.(0k) - J,-VO>0.
Now, using the following expression for the time rate of nonlinear strain tensor (see [33])
(37) E=D- (EL + LTE) = Sym(FF~ ') — (EFF ' + FTF'E),
or in components Eij = D;; — (Eixvr; + Ejrvr;), with D = (L +T L)
have
ov . ov . .
9% k= (FF I _EFF! - F*TFTE) -
O0E OE

@ ~{(Ger ) - (57 7) - [B(58) ® 1}
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T
T ow v
where E' =E, 5B = <6E)

and the matrix rule A - (BC) = B - (AC”) = C - (BT A) has been used.
Substituting equation (38) in (36) we obtain the final form for Clausius Duhem inequality:

ov ov TE HA T £ ov
{f (a—EfZEaE)Jr(TfU s )]F ~F7u<%+5)

ov : ov ov

g —_. oy —u— T . —J,- > 0.
N \Y /,Laq e '+V-(0k)—Js-VO>0

(39)
As T, 0cTEgHA  and S are assumed not to depend on ¥, 0, V6, while the remaining
coefficients in (39) may in general depend on their respective factors and (39) has to remain
in one sign for any F, 9 v, taking into account equation (13), we obtain

v
(40) T = M@i’
TE HA _ ov
41 o'V +o" " = 2ME—8E =2ET,
v v
(“42) 0= ave "

Equations (40)-(42) are the laws of state. In (41) as new result the sum of ¥ and o174

expressed in terms of internal variables is derived in terms of the macroscopic variables
represented by the Duhamel-Neumann tensor stress T and the non-linear Eulerian strain
tensor E. At this point it is astute to select” the extra entropy flux density as (see [17])

(43) k=0,

so that (39) reduces to the following residual dissipation inequality
ov . ov

Poq 97 Har

These results are in agreement with the results obtained in [10] as a consequence of Liu’s

theorem. Very often @ is split in two parts ("resulting thus in stronger conditions”)

(44) b= — I'—J,-V0>0.

(45) Bippr = —I%-q—n-T'>0, &y, =-J,-VO >0, with 17 = ua—‘p, andn = ua—q’,

dq or
where, in some sense, we recognize the different qualitative nature of the two classes of
dissipative processes. ;¢ and P, are the intrinsic and thermal dissipations, respec-
tively. Inequalities (45) govern dissipative processes and are in the standard bilinear form
in terms of fluxes and associated forces: ) 3 XY > 0, as used in standard irreversible
thermodynamics.

Now, in order to obtain the heat equation, we observe that it is none other than a form
of energy balance equation. Indeed, on using the free energy expression ¥ = e — 65, its
time derivative and the laws of state in the energy balance equation or, equivalently, “’just
comparing” entropy inequality (34) and the residual dissipation inequality (44) we deduce
the first general form of the heat equation

(46) phS + V- (035) = e,
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where “’the intrinsic dissipation acts like a body source of heat”. Now, using the state law
(42)1 and taking into account that the entropy S is a constitutive function of (F, 6, q,T'),
we have

. Y o . Y . Py -
&0 5=~ |oFo0 ¥ T 502 " 5qo0 1" aron T
Finally,2substituting equ2ation (47) in (46) and setting C' = — MO%QT‘E, T= M%’
1= #68078\1:17 m= u(%—aqi.,, we obtain the second form of the heat equation in the following
compact form:

(48) CO+V-(03,) = Do + Pyg + Pir, where

(49) O =07 B, ®yy=(01—T1%)-q, P;o = (0m—n)-T.

Here the terms ®,., ®;, and @, represent the thermoelastic dissipation (due to the thermal
and elastic phenomena), the dissipation due to the thermal phenomena and the dissipation
due to the interaction between the thermal and the dislocation phenomena, respectively.
The non-negativity of the specific heat C' follows from the concavity of U with respect to

0 (2% <o)
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